A Data Mining Approach to Predict Forest Fires using Meteorological Data
نویسندگان
چکیده
Forest fires are a major environmental issue, creating economical and ecological damage while endangering human lives. Fast detection is a key element for controlling such phenomenon. To achieve this, one alternative is to use automatic tools based on local sensors, such as provided by meteorological stations. In effect, meteorological conditions (e.g. temperature, wind) are known to influence forest fires and several fire indexes, such as the forest Fire Weather Index (FWI), use such data. In this work, we explore a Data Mining (DM) approach to predict the burned area of forest fires. Five different DM techniques, e.g. Support Vector Machines (SVM) and Random Forests, and four distinct feature selection setups (using spatial, temporal, FWI components and weather attributes), were tested on recent real-world data collected from the northeast region of Portugal. The best configuration uses a SVM and four meteorological inputs (i.e. temperature, relative humidity, rain and wind) and it is capable of predicting the burned area of small fires, which are more frequent. Such knowledge is particularly useful for improving firefighting resource management (e.g. prioritizing targets for air tankers and ground crews).
منابع مشابه
An Interval Tree Approach to Predict Forest Fires using Meteorological Data
Interval prediction can be more useful than single value prediction in many continuous data streams. This paper introduces a novel Interval Prediction Tree IP3 algorithm for interval prediction of numerical target variables from temporal mean-variance aggregated continuous data. This algorithm characterized by: processing incoming mean-variance aggregated multivariate temporal data, splitting e...
متن کاملLearning to Predict Forest Fires with Different Data Mining Techniques
The motivation for this study was to learn to predict forest fires in Slovenia using different data mining techniques. We used predictive models based on data from a GIS (geographical information system), the weather prediction model Aladin and MODIS satellite data. We examined three different datasets: one only for the Kras region, one for whole Primorska region and one for continental Sloveni...
متن کاملتجزیه و تحلیل آتشسوزی جنگل با منشأ آبوهوایی با دادههای ماهوارهای در منطقهی البرز
Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...
متن کاملApplying Decision Tree Algorithm and Neural Networks to Predict Forest Fires in Lebanon
Fires have been threatening green forestry all over the world. In Lebanon, green areas declined dramatically during the last decades, what imposes an urgent intervention with strict governmental policies and support of non-governmental organizations. The orientation is towards techniques that predict high fire risks, allowing for precautions to preclude fire occurrences or at least limit their ...
متن کاملEfficient Forest Fire Detection System: A Spatial Data Mining and Image Processing Based Approach
The drastic ascent in the volume of spatial data owes its growth to the technical advancements in technologies that aid in spatial data acquisition, mass storage and network interconnection. Thus the necessity for automated detection of spatial knowledge from voluminous spatial data arises. Fire plays a vital role in a majority of the forest ecosystems. Forest fires are serious ecological threa...
متن کامل